Use of Magnesium Hydroxide for Reduction of SO₃ Emissions from Coal-fired Power Plants

Lewis Benson – Carmeuse Technology Center 2006 DOE NETL Environmental Controls Conference May 18, 2006

Overall Pilot Project Goal

Demonstrate injection of Thiosorbic®
(magnesium-enhanced lime) FGD
byproduct Mg(OH)₂ injection to produce a
clear stack plume

Overview of Presentation

- Background and objectives of pilot project
 - Injection for SO₃ capture ahead of small air preheater
- Preliminary results
 - SO₃ reduction efficiency
 - Long-duration run at very low APH outlet temperature
 - Air preheater (APH) cleanliness

Overall Objectives

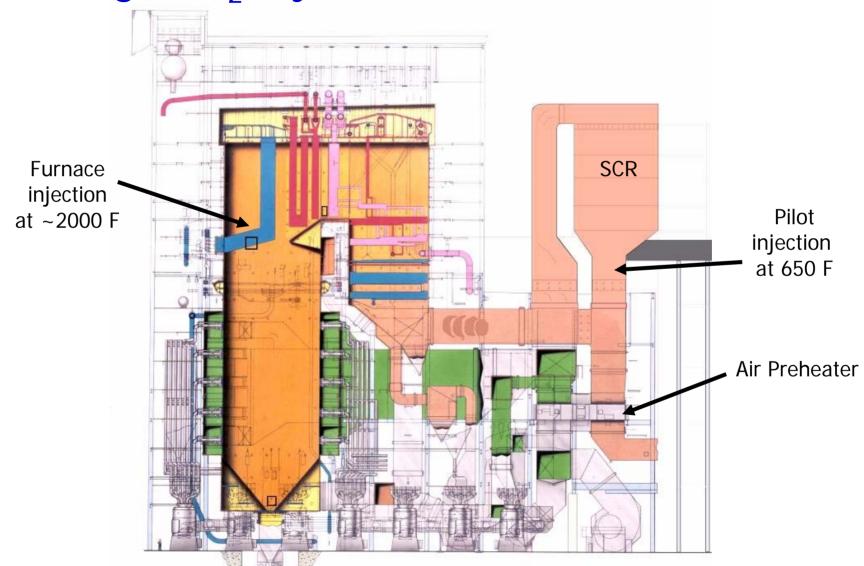
- Improve SO₃ reduction efficiency with byproduct Mg(OH)₂ injection
 - Furnace injection at Bruce Mansfield Unit 3 (no SCR) yielded "clear stack"
 - Furnace injection at Gavin (with SCR) inadequate to yield "clear stack"
- SO₃ control plus increased APH reliability and future increased power generation

Background

- Post-furnace injection promised higher SO₃ capture
 - Most Mg(OH)₂ injected in furnace likely lost via sintering or fusion with ash
 - Pilot tests by Consol R&D
 - 90% reduction after furnace at ~1/2 injection rate
 - Suggested additional pilot tests with SCR-like flue gas

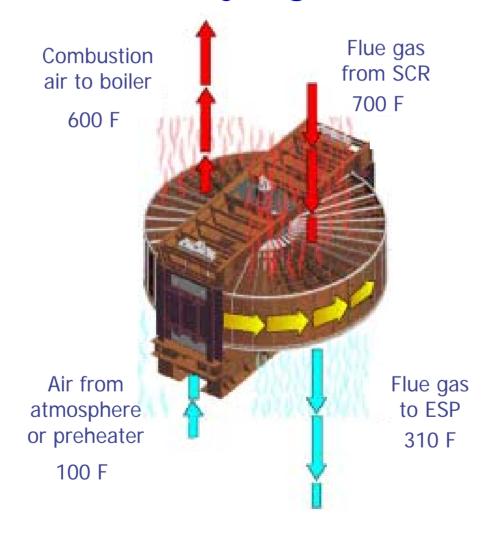
Pilot Project Participants

- Alstom Air Preheater Company
 - Providing heat transfer elements and APH operating conditions
 - Physical analysis of elements after long operation
- Consol R&D
 - Built and operated pilot for DOE mercury capture project
 - Recently won NETL grant to demonstrate mercury removal which requires SO₃ reduction with Mg(OH)₂
- Allegheny Energy
 - Host site



Specific Project Goals

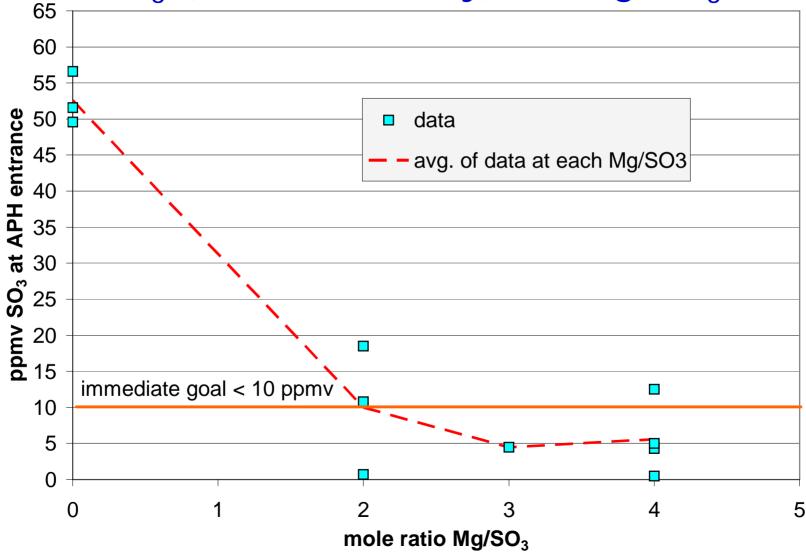
- Immediate-term
 - <10 ppm SO₃ at pilot APH entrance
 - Expected to yield <5 ppm at stack
 - Demonstrate reliable pilot APH operation
 - Plant operations manager "How do you know this won't plug up my air preheater?"
- Longer-term
 - Thiosorbic FGD with SO₃ control for new power plants 2 ppm SO₃
 - Thiosorbic FGD with SO₃ control and larger APH's
 - 2% extra power with corresponding reduction in CO₂
 - ~0 ppm SO₃ at stack

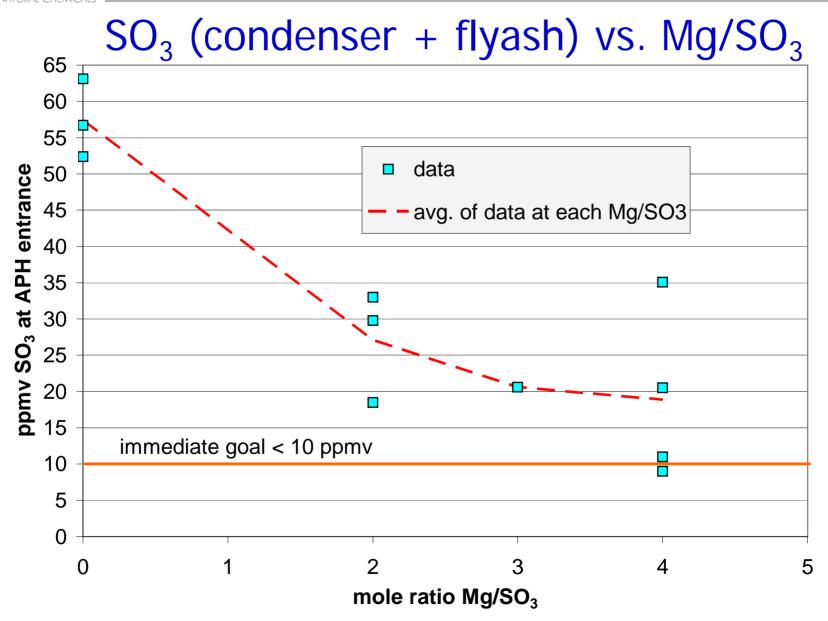


Mg(OH)₂ Injection Locations

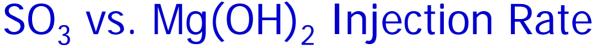
Air Preheater - Ljungström®

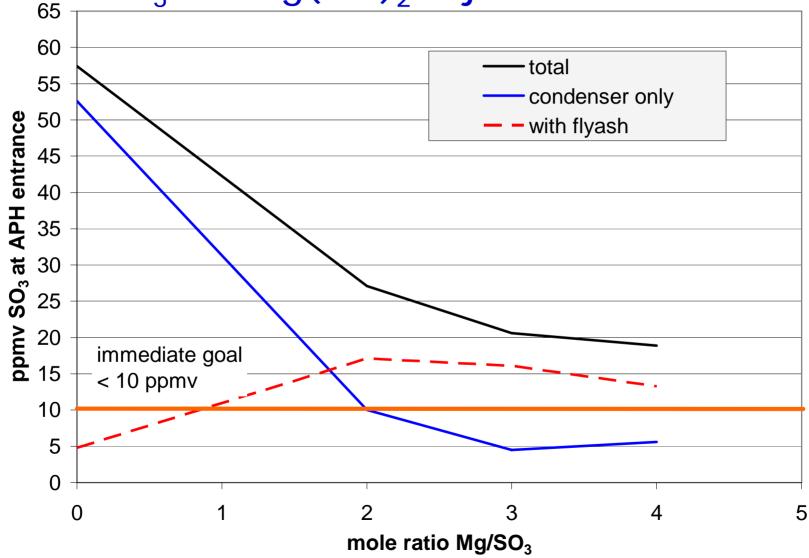
Pilot Project Operation


- SO₃ capture efficiency vs. Mg(OH)₂ injection rate
 - SO₃ spiking system 50-55 ppm SO₃ like SCR
- 32 day long-duration run simulating ~2% generation efficiency increase
 - 220 F flue gas exit temperature
 - 35-55 ppm SO₃ before injection
 - 3:1 Mg/SO₃ injection rate based on 50 ppmv SO₃



SO₃ measurement


- Clean Air Engineering proposed Method 8B
 - Modified by removing quartz thimble filter, inserted quartz wool plug in probe tip
 - Measured condenser SO₃ catch and probe SO₃ catch separately
 - Some researchers report only condenser catch
- Reagent interference
- Tried inertial sampler to exclude flyash/reagent



Pilot Long-duration Run Results

- APH operation with Mg(OH)₂ with 220 F at exit
 - No increase in flue gas pressure loss
 - ~ 3 in. H_2O
 - No acid dewpoint detected down to 115 F
 - APH baskets remained clean
- APH operation with no Mg(OH)₂ with 220 F at exit
 - 1 in. H₂O increase in flue gas pressure loss in 4 days
 - APH baskets fouled

Pilot Air Preheater Cold-End Flue Gas Exit 32 days at 220°F with Mg Injection

Pilot Air Preheater Cold-End Flue Gas Exit 32 days at 220°F with Mg Injection

Pilot Air Preheater Cold-End Flue Gas Exit 4 days at 220°F with no Mg Injection

Pilot Air Preheater Cold-End Flue Gas Exit 4 days at 220°F with no Mg Injection

Caveats for Commercial Scale-up of Pilot SO₃ Capture Results

- Gas residence time 1.6 secs
 - 77 ft from injection point to APH entrance
- Reagent dispersion
 - Single nozzle in 20 inch diameter duct

Summary

- Thiosorbic FGD byproduct Mg(OH)2 injection ahead of pilot APH reduced SO₃ to <10 ppmv
- No increase in APH pressure drop after 32 days at 220°F flue gas outlet
- APH baskets being examined by Alstom